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SwRI is an Applied  Research & 
Development Company
• Founded in 1947, based in San Antonio, 

Texas

• 501 (c)(3) nonprofit corporation
• Internal Research
• New Laboratories

• ~$600M Annual revenue from contract 
work for industry and government clients

• Over 2,600 employees 

• 1,200-acre facility; 2.3 million square feet 
of laboratories & offices

• Flexible IP policy

• Machinery Department: 70 employees, 5 
labs with turbomachinery trains up to 14 
MW
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Large-Scale Long-Duration Energy Storage is 
Needed to Enable Deep Renewable 
Penetration
• Variability, demand mismatch of 

wind and solar
• Studies show that storage on the 

order of ~1x daily energy 
production may be needed1

• Storage at renewable plant or 
baseload plant absorbs 
ramps/transients

• The storage need for a large city 
ranges from ~ 25 GWh (4 hours 
storage in Phoenix) - 840 GWh
(daily consumption in Tokyo)

Image 
Source: 
CAISO 2019

1-35 of the world’s largest 
pumped hydro system…

…or 23-763 of these 
molten salt tanks

1Solomon, A.A. et al, 2017.
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Why Not Batteries?

• Batteries offer low $/MW but high 
$/MWh for significant durations above 2-
6 hours
• Energy and power both scale by adding cells

• Other concerns:
• Rare-earth material sourcing (lithium, 

cobalt)2

• Degradation3

• No viable recycling option4

• Thermal management/runaway5

• Other technologies offer promise of 
decoupling power with low-cost energy 
storage

Image Source: 
Laughlin (2019)

Image Source: 
S&P Global 
(2019)
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Global Energy Storage Timeline

Batteries

Flywheels, CAES

Data and Images from EASE/EERE (2017)
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New Long-Duration Energy Storage 
Technologies are Needed

http://css.umich.edu/sites/default/files/U.S._Grid_Energy_Storage_Factsheet_CSS15-17_e2018.pdf
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New Long-Duration Energy Storage 
Technologies are Needed

• New systems will need:
• Lower cost than pumped hydro or batteries
• Higher round-trip efficiency and fewer carbon 

emissions than gas-fired CAES
• Longer duration than flywheels
• Non-specific geology (no mountains or salt caverns)

• Many new system options are based on 
thermodynamic cycles:
• Pumped heat energy storage (PHES)
• Adiabatic or hydrogen-fired CAES
• Liquid air energy storage (LAES)
• Thermochemical

• Hydrogen-based

• Synthetic natural gas

• Closed sulfur cycle

Diabatic CAES

Example PHES

Image Modified 
from Kerth (2019)

Image Source: 
Tom (2019)
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Mechanical ES: Pumped Hydro
• Potential energy of water using reservoirs at 

different elevations
• Decades of commercial experience
• Mature turbomachinery

• Reversible (Francis) pump-turbine
• Ternary sets

• Technology Gaps/Development
• Geography-specific concept -> siting limitations
• High capital cost
• Modular pumped hydro; subsurface; subsea; 

open-loop

• Expected Performance
• 70-85%+ round trip efficiency
• >40 year life

Francis Turbine Runner, 1942

World’s First PSH 
System, 1930

Data Source: Luo et al (2015)
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Mechanical ES: Compressed Air Energy 
Storage
• Energy stored in large volumes of compressed 

air; supplemented with heat storage (adiabatic 
CAES)

• Centrifugal/axial machinery in existing concepts 
derived from gas turbine, steam turbine, 
integrally-geared compressor. 

• TRL 9 for diabatic; 5-6 for adiabatic CAES

• Two existing plants at Huntorf & McIntosh

• Technology gaps/development
• Site-specific; requires salt dome
• Adiabatic CAES: heat exchange, storage concepts; 

reciprocating isothermal CAES; constant-head CAES; 
hydraulic compression; subsea CAES

• Expected performance
• 40-50% for diabatic CAES, ~50-70% for adiabatic CAES Diabatic (top) and Adiabatic (bottom) CAES

Image Source: Kere (2014)
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Mechanical ES: Flywheels
• Store energy as rotating kinetic energy

• Vacuum environment for loss minimization

• TRL 9, commercially available as UPS

• Technology gaps / development
• High standby losses; Low power density

• Improved strength:weight materials; 
minimize electrical losses; superconducting 
magnetic bearings

• Expected performance
• 90-95% round-trip efficiency

• Nearly infinite cycle lifetime

• Very short response time

Data Source: Amiryar and Puleln (2017), Luo et al (2015)

Image Sources: Beacon Power20 MW Flywheel Plant for NYISO
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Mechanical ES: Gravitational
• Electricity used for elevation of solid mass

• Subsurface with wind/hydraulic pump
• On-surface with rail cars or towers

• High component TRL, including 
motor/generator and hydro pump/turbine

• System TRL 4-5, demonstrators/pilots 
funded

• Technology gaps/development
• Overall system immaturity; Loss minimization; 

Sealing of hydraulic systems; position control

• Claimed Performance:
• 80-90% Charge/Discharge Efficiency
• 30-60% cost of pumped hydro
• 1-10 s response Image and Data Sources:

https://energyvault.ch/
https://www.gravitricity.com/
https://www.aresnorthamerica.com/grid-scale-energy-storage
https://heindl-energy.com/technical-concept/basic-concept/

Gravitricity

Heindl
Energy

ARES

Energy 
Vault

https://energyvault.ch/
https://www.gravitricity.com/
https://www.aresnorthamerica.com/grid-scale-energy-storage
https://heindl-energy.com/technical-concept/basic-concept/
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Thermal ES: Storage Overview

• Sensible storage raises or lowers temperature of single-
phase material
• Molten salts, thermal oil, water, rocks, concrete, rocks, etc.

• Latent heat storage changes phase, typically liquid-solid 
transition
• Ice, Phase change material (PCM)

• Direct (heat transfer and storage with same medium) or 
indirect systems

• Two-tank or thermocline storage

• Technology gaps/development
• Corrosion and thermal/cyclic stability
• Low-cost compact high-performance heat exchangers
• Molten salts above 565 °C; salt pumps & tanks
• Particle thermal storage & heat transfer
• Encapsulated PCMs
• Low-cost cold storage

Image Source: Shultz (2019)

CSP + 
Molten Salt 
TES

Ice storage

Encapsulated PCMhttps://www.ice-energy.com/

https://www.ice-energy.com/
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Thermal ES: Pumped Heat
• Electricity drives heat pump to charge system, 

creating temperature difference; Heat engine 
discharges system for electricity out

• Working fluids: Argon, air, sCO2

• Machinery is conceptually like a gas turbine, but 
some key differences.

• Two prominent designs
• Thermoclines and reciprocating machinery: 

Isentropic UK / Newcastle Univ.
• Packed bed stores (gravel)

• Heat exchangers and turbomachinery: Brayton 
Battery / Malta Inc.

• Hot store- molten salt
• Cold store- refrigerant

• Technology gaps / development
• Heat exchangers, machinery, cycle/system

• Predicted 50-70% RTE
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Ambient  Air (1 bar, 20°C)
1.15 kg/m3

Liquid Air (10 bar, -170°C)
656 kg/m3

Thermal ES: Liquid Air
• Similar to CAES but different process liquefies 

air for compact, portable storage
• Claude cycle for liquefaction with thermal storage

• Utilizes existing technology for nitrogen storage, 
radial turbomachinery (at pilot scale).

• Technology gaps /development
• Overall system efficiency and costs via 

turbomachinery and heat exchanger development; 
system / cycle variations & maturity

• Water handling; Large-scale system development 
(5-50 MW); Synergy with waste heat, flywheels

• Expected Performance
• 60-70% efficiency and 30-40 year lifespan

• Storage losses as low as 0.05% by volume per day 
(Yang, 2006) 
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Thermochemical ES: Hydrogen
• Use excess grid energy to split water in to 

H2 with electrolysis or reform methane

• Salt dome storage is mature, production 
and utilization under development.

• Technology gaps and development
• High cost, low RTE

• High temperature electrolysis

• Feedstock availability required

• High pressure storage – location and safety 

• H2 transport and compression challenges

• Couple with CSP or other heat source instead 
of using surplus energy to drive electrolysis

• Expected Performance ~10-30% round trip 
efficiency, targeting 50%

Charge

Water electrolysis

Store

H2 at high pressure

H2O2, other carriers

E Q
or

O2

H2

E

2H2O → 2H2 + O2

H2O

Discharge

Use for electricity/power generation:

Hydrogen gas turbine / fuel cell

Reaction heat release

Sell

Use for refining

Use for NG or Ammonia

https://www.turbomachinerymag.com/fuel-switching/

https://www.edie.net/news/6/Work-to-being-on-pioneering-salt-
cavern-hydrogen-storage-scheme/
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Thermochemical ES: Sulfur
• Principle

• Closed sulfur cycle include SO2

Disproportionation, Sulfur 
combustion, and sulfuric acid 
decomposition

• Turbomachinery Integration
• GT and heat exchangers for sulfur

• Current TRL: 3-5

• Technology Gaps
• Overall system complexity and 

integration

• Expected Performance
• High energy density

• R&D Activities
• General Atomics development with 

CSP

• Form Energy with ARPA-E DAYS

Charge

Excess energy/heat for H2SO4 Decomp

2H2SO4 →2H2O + O2 + 2SO2

SO2 Disproportionation

2H2O + 3SO2 → 2H2SO4 + S

Store

Sulfur piles

Discharge

Sulfur combustion to 

run a steam turbine

Store

Sulfuric Acid

H2SO4

E Q
or

O2

SO2

E

Charge

Store

Discharge

Store

H2SO2

H2SO4 S
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Development Needs for Energy Storage: 
Machinery & HX
• Most new thermodynamic systems are closed or 

semi-closed cycles requiring:
• Very high machinery efficiency over a variety of 

temperatures, pressures, and scales (radial    axial)
• Low leakage/makeup requirements; consider 

hermetic machinery
• High pressures, densities, possibly temperatures
• PHES: High-temp compressor; single machinery train 

for charge/discharge mode 

• Integration of compression, expansion, and heat 
exchange functionality into machinery to improve 
cost and performance

• Hydrogen combustion, compression
• Emissions, stability/range
• High tip speeds or many stages

• Fast ramping and wide operating range

• Low-cost compact HX for gas-liquid and with fast 
transient capability

High-Efficiency High-Temperature 10 MWe 715 °C Supercritical 
CO2 Turbine with Low-Leakage Dry Gas Seals (Moore 2019)

CO2 Compressor for CCS with Internally-
Cooled Diaphragms (Moore 2014)

Wet Gas Compression Test 
(Musgrove 2016)
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Development Needs for Energy Storage: 
Systems
• Control & operation experience of closed or semi-

closed cycles
• Inventory control for turndown; ambient conditions
• Leakage management / recovery
• Trip & settle-out scenarios
• Charge/discharge mode system balancing

• Detailed plant design & cost optimization

• Integration/optimization with numerous 
generators and applications
• Coal, Gas, Nuclear, Concentrating Solar, Waste Heat, 

Combined Heat & Power, Geothermal
• Sector coupling with heating, cooling applications
• Existing Brayton/Rankine cycles, advanced power 

cycles
• Storage for time-shifting CCS

CSP Integrated with PHES (Image Source: U.S. DOE)
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Current SwRI R&D – Pumped Thermal 
Energy Storage Demo
• Project funded by DOE/ARPA-E; 

Partnered with Malta, Inc.

• Advance PHES from concept to a kW-
scale system demonstration in 27 
months
• Focus on system operation and 

integration

• Evaluate control strategies for system 
startup, shutdown, and mode change

• Gather performance data to verify 
system model (10 MWe, 10 hrs at 
rated power) 

Charge Mode: Heat Pump Discharge Mode: Heat Engine
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Questions?

Tim Allison, Ph.D.
Southwest Research Institute
(210) 522-3561
tim.allison@swri.org
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